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ABSTRACT _
ZJU%S

In view of the experimental evidence that localized diamond-
shaped buckling patterns are usually observed in the buckling of
cylindrical shells under axial compression, the postbuckling behavior
of such shells is analyzed by the use of an asymptotic unperiodic
function instead of the periodic buckled pattern previously used by
other investigators. After determining the arbitrary coefficients
in the deflection pattern so as to satisfy the conditions of continu-
ity along the center line, the postbuckling behavior is determined by
the method of solution previously used, that is, from the minimum
condition of the total potential energy and total strain energy with
respect to several parameters for the case of dead-weight loading and
for the case of rigid-testing-machine loading, respectively. The
analysis shows that nearly square diamond-shaped and damped (in other
words, localized) buckled patterns, as usually observed in experiments,
give the minimal values of the energy. However, the minimal value of
the buckling stress obtained in this paper is higher than the values
obtained for the periodic buckled pattern. This may be due to the
imperfect satisfaction of the conditions of continuity along the center
line and to the inaccuracy of the assumed buckled pattern. For this

reason, improvements in this analysis are currently sought.
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1. INTRODUCTION

The elastic stability of thin cylindrical shells has recently
become important because of an increased application of thin shells

in missile structures.

As is well known, the buckling stress value predicted by the linear
theory based on small deflections is much higher than the experimental
values. Many attempts have been made to explain this large quantitative
disparity for cylindrical shells. First, the nonlinear theory based on
finite deformations which was successfully introduced by Karman and
Tsienl-* more than two decades ago, has contributed much to the under-
standing of the essential reasons for the large discrepancy between
classical theoretical and experimental results. However, in this
original paper, due to mathematical difficulties encountered in the
nonlinear theory, the analysis was carried out by specifying some para-
meters in an arbitrary manner; in this respect, the study was not com-
plete from the physical point of view. Thereafter, the "jump" or "snap
through" theory has been improved and enlarged by the cumulative efforts
of subseqguent investigators2’3’u’5’6. For example, more general treat-
ments in which the ratio of wave lengths is determined by the stationary
condition were presented by Leggett et a12 and Michielsens, and a more
rigorous calculation of the postbuckling behavior of a perfect cylin-
drical shell was presented by Kempners. The latter was improved by
Almroth6 who obtained a lower minimum postbuckling load than Kempner
by considering a larger number of free parameters in the displacement

function.

However, all these analyses of the postbuckling behavior of an
axially compressed cylinder assume a periodic buckled pattern over the
whole surface. As can be seen from the experimental results, this mode
of deflection has not been observed, but localized diamond-shaped

buckling patterns have usually been found ’8. Yoshimurau showed that

Superscript numbers indicate entries in the References at the end
of the report.



this type of local buckling could take place at a lower stress than the
general buckling of the whole surface; an inextensional large-deflection
pattern was employed in an analysis based on the energy barrier and the
Tsien cr1terion9< The difficulty encountered in such a local buckling
problem is that the deflected shape is not exactly polyhedral. If the
buckles do not cover the entire surface of the cylindrical shell, part
of the shell wall must be subjected to membrane and bending stresses,
and the deflected shape cannot be maintained without an external load.
Hofflo analyzed this local buckling problem, with some simplification,

by taking into account the plastic deformation along the ridges separa-

ting the buckles,

In this paper; the postbuckling behavior of a circular cylindrical
shell under axial compression will be analyzed with the aid of an
asymptotic unperiodic function under the assumption of local buckling
exhibiting only diamond-shaped two-tier buckles. The work described
can be considered as a continuation of the work of the previous

3
investigatorsl’g’ ’5’6¢

Accordingly, the method of solution employed

is the same: thus the analysis starts from an approximate function for
W , which contains arbitrary parameters, and the stress function is
then determined from the compatibility equation. However, in this case,
the assumed deflection pattern was made to satisfy the conditions of
continuity at x = 0 and thus it applies to both the upper and lower
parts of the cylinder. DNext, the potential energy is calculated by the
use of the membrane stresses and the assumed deflection. The values

of the arbitrary parameters can then be determined by applying the

principle of stationary total potential energy to the system.

In addition to the disagreement of the buckling loads, the test
results show large scatter in all cases, exceeding by far the scatter
found in tests with bars and plates. Initial imperfections and the
elasticity of the testing machines may have a great effect on the
results, and much research workll has been devoted to a clarification
of this situation. However, in this paper, such effects will be

disregarded. The local buckling of a thin-walled cylindrical shell



with uniform wall thickness without stiffeners, subjected to a com-
pressive load fixed in the axial direction and uniformly distributed
along the circumference, will be considered. The limiting cases in
which the shell is loaded in either a dead-weight or a rigid testing

machine are discussed.

-3 -



2. NOMENCLATURE

The following coefficients are all functions of £, p and gq :

Aﬁpq’ Blpq = quantities defined by Eq.(22)
cﬂpq’ szq = gquantities defined by Eq.(47)
szq’ Kﬂpq = quantities defined by Eq.(49)
szq, ngq = quantities defined by Eq.(27)
szq, szq = quantities defined by Eq.(32)
Pzpq, Qﬂpq = quantities defined by Eq. (47)

The following coefficients are all functions of £, p, @ and m :

1,2) quantities defined by Eq. (20)

(m

(m = 2)

(m = 0,1,2,3)

B4

X Y,
fpq,m’ ~ipg,m

U W uantities defined by Egqg. (33
fpa,m’* " ipq,m qQ y Eq.(33)

quantities defined by Eq.(55)

R S
£pg,m’ Tipqg,m

Zi a coefficient which is a function of £ only,
defined by Eq. (20)
Cr’cs integral constants in the stress function

F ,G » qantities which are functions of £,.,£,.,p,,p.q
J—Eigjpiqu £1%5P1P59" ora defined by Eq. (L6) T

Z.p.p.q’Iﬂ £

ER L L LR
YP, ZP quantities which are functions of
£i,£j,pi,pj,q,mi,mj and defined by Eq. (45)
D = Et5/12(l-v2) bending stiffness
E modulus of elasticity
F Airy stress function
L half length of shell
R mean shell radius



W W W
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Wp/(Tr‘tSLE/R)

W W

W=

(W

W=

(W, + Wz)/(ﬂ‘tSLE/R)

a = W/Kx, b

ai,bj,CE

£,m,p,q,r,s

ex’ey’yxy

K_,K_,K
x>y " xy

xy/xx

=
]

S
1]
™
~.
o

extensional strain energy, bending strain energy,
and potential of applied load, respectively

nondimensional quantities

nondimensional total potential energy

L+ Wt Wp)/@tle/R)

nondimensional strain energy

arbitrary coefficients

positive integers

nunber of circumferential waves
wall thickness

axial, circumferential, and inward radial displace-
ments, respectively

axial and circumferential coordinates on median
surface of shell, respectively

deflection parameters [see Eq.(18)]
damping parameter in axial wave form

axial, circumferential and shear strains on the
median surface

changes of curvatures and unit twist of the median
surface

maximum amplitude of deflection
unit end shortening
ratio of the circumferential and axial wave lengths

nondimensional damping coefficient



axial and circumferential half wave lengths,
respectively

Poisson's ratio
applied average axial compressive stress

axial, circumferential and shear stresses on
the median surface, respectively (positive in tension)

deflection parameter

The following quantities are all functions of p and @ :

@ @
@@ ®

L !
YT k ox

)

gquantities
quantities
quantities
quantities
quantities
quantities
gquantities
quantities
quantities
quantities
quantities
quantities
quantities
quantities

quantities

4 > ( .
—] +
3%y 3¢

defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by
defined by

defined by

)

Eq. (25)
Eq. (36)
Eq. (42)
Eq. (38)
Eq. (58)
Eq. (60)
Eq. (57)
Eq. (54)
Eq. (65)
Eq. (68)
Eq. (61)
Eq. (73)
Eq. (48)
Eq. (50)

Eq. (53)



n,_n

suffices "x" and "y"

denote differentiation with respect to
x and y , respectively

suffices "£" and "u" denote the lower and upper half of the
cylinder, respectively



3. BASIC RELATIONS

The basic relations necessary for solving the local buckling of
an axially compressed thin-walled circular cylindrical shell are given

in reference [5] and are reviewed here.

In the following investigation it is assumed that the cylindrical
shell is long enough so that the boundary effects at the circular edges
may be neglected, and short enough so that there is no danger of

buckling as a tubular column.

3.1 Median Surface Strains and Changes of Curvature

With terms up to the second order included, the median surface
strain components and the changes of curvature are expressed in terms

of the displacement components and their derivatives as follows:

~
€ = U + =W
X X X
1l 2 w $
E =V _+ T W_-= 1
y ¥y 2y R (1)
Y. =u +V_ +WW
Xy ¥ Y
S
K = w K =W K =W (2)

3.2 Median Surface Stresses

The axial, circumferential and shear stresses on the median

surfaces are given by



B E [ 1 2 1 2 w 1 h
o, = 5 (ex+ve)= 2Lux+-2--wx+\)v *3 V. "R
1-v y 1-v y y J
E E 1 2 W 1l 2
oy— 1-v2 (ey+ vex) = 1-\;2 [vy +2wy - R +v(ux+2wx )] (3)

E
Txy = ) (uy+ vt wxwy)

3,3 Total Potential Energy

The total potential energy is given by the sum of the strain energy
Ws and the potential energy of the external force Wp

The strain energy WS is composed of the following two parts:

the extensional strain energy Wl , where

L _2mR

W, o= gﬁ U/\ Jf [(Ux+dy)2 - 2(1;V)(oxay- Tiy)} dxdy ; (5)

and the bending strain energy W2 , where

L 27R
Ww.o=2 U/\ Jf (w +w )2- 2(1-V)(w__w__~- W ) | dxdy (5)
2”2 J xx. ¥y XX yy Xy S
3
in which D = —4§3——§—
12(1-v7)

The potential energy of the axial stresses applied to the ends of

the shell can be expressed as



L. EQUILIBRIUM AND COMPATIBILITY EQUATIONS

The equilibrium equations and the natural boundary conditions can
be derived by the variational process from the stationary principle of

the total potential energy.

The equilibrium equations are

ch BTX
Nty ©
oT do

ety = O (7)

D 4 o
=Vw=o0w _ +2T_w__ +0g -w + <L
t X XX Xy Xy Yy ¥y R
L L i
in which V' = 9 2 2 S+ QH
ox dx"dy~ oy

The equations of equilibrium in the median surface are identically
satisfied by the introduction of the Airy stress function F(x,y) which

is defined by the following relations

o, =F__, T = -F__, o =F . (8)

1
7 xx ngway + Fxxwyy + P, (9)
By eliminating u and w from the formulae in Eqs.(1) and by

using the stress function, the compatibility equation can be obtained

as

V'F 2 1
" Yy " Ve Yy TRV . (10)

- 10 -
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5. APPROXIMATE DEFLECTED SHAPE

It is usually observed in experimentsu’T’8 that cylindrical shells
buckle into the so-called diamond-shaped pattern, exhibiting local

inward-buckles of only two tiers as shown in Fig.2. The previously

published analyses of the post buckling behavior of an axially compressed

cylindrical shell assumed periodic buckling patterns over the whole
surface. In this paper, a damped diamond-shaped pattern, as usually

observed in tests, will be considered.

The origin of coordinates is taken at the midpoint of a ridge
between adjacent diamond-shaped dents as shown in Fig.2, since the
deflected pattern is antisymmetric about this point. The x and y
coordinates are taken in the axial and circumferential directions,
respectively. First, an expression representing an approximate deflec-
ted shape for the lower half ( x 2 0 ) of a cylindrical shell will be

considered.

A damped diamond-shaped pattern is expressed by the product of two

functions as follows:

W = Wdamp. (X)‘wdiag (X’y) (ll)

in which w denctes the damping function and w.. denotes the
damp. dia.

diamond-shaped deflection function.

The w functions used by several previous investigators are

dia.
based on the following expression introduced by von Karman and Tsienl

2
_ s I 10 Y
Wdia. = A(sul N X + sin X )
X y
_ 1 amx _1 amy = Y
= A(l-—2 cos = > cos = +2 sin N sin N ) (12)
X y X y

- 12 -



in which the square is introduced to account for the fact that the shell
has a definite preference to buckle inward, and in which XX and Xy
are the unknown half wavelengths of the buckles in the axial and cir-

cumferential directions.

The expression will be modified in the present paper. The constant
coefficients in Eq.(12) will be replaced by arbitrary parameters and
more terms will be used in the function of x to make it easier to
satisfy the conditions of continuity along the center line ( x =0 ).

In addition, the term of cos 2by in Eq.(12) will be dropped, to take

into asccount the fact that the ridges become very nearly straight after

buckling. Accordingly, Yaia is expressed as follows
even add
Viig, = }: a; cos iax + Ez bj sin jax sin by  (13)
i=0,2,... J=1,3,..-

where a = W/XX, b = W/Ky and i and j are taken as even and odd
integers, respectively, since the deflection pattern is antisymmetrical

gbout the origin of coordinates.

The damping function w (x) 1is expressed as

damp.

_ -£Bx
Vamp. = }: C, e (1)
£=1,2,...

and finally, the approximate deflected shape is represented by

even odd
w, = }: C e—Eﬁx }j a, cos jax + }: b, sin Jax sin by |+ C
y/ y/ i J o
£E=1,2,... i=0,2,... J=1,3,...

(15)

- 13 -



by adding a constant term CO , which expresses a uniform expansion

due to the uniform axial compression.

The conditions of continuity along the y axis ( x = O ) are as
follows. From the continuity of deflection, slope, bending moment and
shear force normal to the shell, the following conditions for w can

be obtained:

Wy =W, (B.1)
Vox = T Vux (B.2)
LT (B.3)
wz,xxx = - Wu,xxx (B.4)

From the continuity of the axial and circumferential displacements, and
of the membrane and shearing stresses, the following conditions for u

and v can be obtained:

u, = -u, (B.5)

V=V (B.6)

uﬂ,x - uu,x (B.7)

Vﬂ,x + wﬂ,xwi,y = vu,x + wu,xwu,y (B.8)

The other conditions necessary for the determination of the arbitrary

constants are

27TR
Jf o, dy = 27mRo (B.9)
o)
L
Jﬁ cydx = 0 ; zero average circumferential stress (B.10)
()

- 14 -



v must be a periodic function of y ; the nonperiodic

term for y 1in the expression of vy should be zero (B.11)

In order to check these conditions along the y-axis by using the same
deflected form (Eq.(15)) in both halves, it is enough to replace (y)
in the lower half by (-y) in the upper half due to the antisymmetry.

First, in order to satisfy the first four conditions (B.1) to (B.L)

for w , it is sufficient to specify wdamp only. Thus w becomes

even
W= % 5e-Bx o he P o TOBX ;ﬂ 2, cos iax
1=0,2,...
odd
+ }: bj sin jax sin by | + 7 (16)
3=1,3,...

More arbitrary coefficients of a, and bj should theoretically
be retained to satisfy all the other conditions, but this would make the
analysis very complicated. Accordingly, for the sake of simplicity,
only the important conditions are considered here, and conditions of
(B.4) and (B.8) are neglected. This means that the continuity conditions
for shearing stresses in the surface plane and normal to the surface are

not satisfied. w can be simplified to read

=

I

€
3 |t

(e-Bx - % e-sz)<Cd6-cos 2ax) + 2 sin ax sin by ) + 7
' (17)

where &, @ and 7y are the arbitrary coefficients to be determined

from the other conditions, as will be shown later.

The damping functions in equations (16) and (17) are compared with
each other in Fig.3 with a parameter of B' = (ka) , from which it can
be seen that (2e-BX- e-EBX) is close to %(Se'BX— re'25X+ e'SBx) and

is sufficilent in accuracy.

- 15 -
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Further, in order to prevent & becoming a function of ® , one
more term for w? is added, and then the deflected pattern is finally

expressed as

w:w

3|t

[(e-ﬁx - él- e—2Bx) (Ot(b -cos 2ax)+2 sin ax sin by) + 7}

rof Ze(eP L 5T (18)

- 17 -



6. STRESS FUNCTION

Equation (10) can be solved to give the stress function F , from
which the membrane stresses and hence the displacements u, v can be
determined. TIntroduction of the assumed deflection w of Eq.(18) into

the right-hand side of the above equation leads to

-/

L
V'F = ob -2Bx .
7 = - w 2 b ;; 2: 2; ( 0q,1 cos pax + Yﬂpq,l sin pax)

£=1,2 p =0,2 Q.= 0
( p=1) (qs—l) a cos q by
*|(sin g by)

2t° 4\ o ABx
+ W b 24 Ej E; ( £pq,2 cOs pax +Y£PQ,2 sin pa%

=2,3,4 p=0,2 q_=0,2
= = (o] b
(p=1,3) (a,=1) y cos g by
(o sin qsby

ol

2
- w? E§ b §¢ (e Px_ 2e_2Bx)«
n
2
- W EE bh§¢2 ;z z, o ~1Bx sin ax sin by (19)
" £=2,3 k4

in which

- 18 -
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7. DETERMINATION OF ARBITRARY PARAMETERS AND INTEGRATION CONSTANTS

The arbitrary parameters in the approximate deflected shape and the

integration constants in the stress function are determined as follows:

First, only the nonperiodic terms for y are considered in pursuit
of the condition of Eq.(Bl0), since the integral of the periodic terms
for y over the circumference reduces to zero. Of course, this condition

should be satisfied at any value of y .

Because only a locally deflected pattern and a rather long cylinder
£BL

are considered, e can be put equal to zero. However, if the cyl-

inder 1is short and the damping coefficient £ 1is small, then the analyt-

- 1BL

ical results will lose their accuracy. If terms of e are neglected,

the condition of Eq.(B.JO)can be written as

Nt -
2; 24 CxﬁpuBﬂpo-z¢A£po)Xﬂpo,l+(puA£po+£¢B£po)Y£po;4
£=1,2 p=0,2

3
[;;}j 2J ( puBEpo E¢A2po)xﬂpo 2 +(pud £po £¢Bﬂpo) £po, 2>+ Ha ¢ =0

Y Y

90,17 Tapo,15 Xppo,2 Yipo,2
in Eq.(24) and setting both terms of w and w' equal to zero, ¢ and

Upon substitution of the values of X

® can be written as functions of pu and ¢ only:

e - L o' (uP4116%)
2 2%4) (1Pe96®) (P 4g®)
\ (25)
5 - @
(b2 +g?) (uBagP)
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where

2
J = 2 P vaS)A + 2plugB
fpq (p°u°- £ -vg®) fpq T 2PA¥B,
22 222
0 = -2 -V B -2 A
fpq (p ¢ -vq") fpq = 2PMMQA,

(27)

The condition of (B.11) , that the displacement v must be a periodic

function of y , leads to the determination of 7y such that

J

o’ _ X
Et " Yj

(28)

since the terms which are nonperiodic in y and periodic in x Dbecome

zero identically. It should be noted that ¥ 1s a constant, which

means a uniform radial expansion due to a uniform axial stress.

it is not an independent parameter in the case of the undamped, periodic

p)

deflected pattern discussed before”.

Integration of vy with respect to y leads to

v=(1+v) b Z Crre_ sin rby - (1+v) b C se
r=2,4,. s=1,3
£2 }j Ez }j 1 -ipx
- W —= b — €
UE 4
=1,2 p=1 q-=1

J X -0 Y cos pax + (0
X {E £pa” £pg,1l " Lpg ﬂpq,l) pax +(

T] l-_-2,3,l& P =O,2 qc=2

(ps=l)3) (qs=1)

- 26 -

X + .Y
£pq £pq,l " fpq” fpq,l

2 _
2t 1 -ipx
- v ) = - -
- Z s Z q ¢ {Xﬂpq,l Xopa,2 7 Yapq,1 Yﬁpqﬁ}

cos sby

sin qcby
X (- o cos qsby)

However,

)sin pa%}(- cos qsby)



2

- w EE b (2e_BX— e_2BX) sin ax cos by

1

1l 2 t2 -2Bx -3px. 1 -Lpx
-pw 0P (e - e e ) sin 2by
|

32 2 - 4Bx

+ w =5 by 24 Z e (Oﬁll cos ax - J,, sin ax) cos by (29)
" £=2,3,k

In order to satisfy the boundary condition of Eq.(B.6), the terms
in cos sby(s=1,3,...) should vanish, since the terms of sin rby(r=2,4,..
satisfy that condition identically. From this condition, the following

relation can be obtained:

c =0 (s = 3,5,...)

2 X 1
t
- (1+v)C) = w5 Z (lelxul,l Oanzll,l)' o Z Z >(30)
=1

T 1,2 522,34 p_

X

2,2 \
(3 gp1¥ep1,2 0 p1 Y ap1,0) ~ ¥ & Z 20
=2,3,k

Next, from Eq.(1), u_ can be written as
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where

2 22 22
M - -V -2 A, - 2vplugB
ipq {q (Pu"-£¢ )} fpq PAgB
(32)
2 22 22
N = -v ) B,  + 2vplupA
g {? (P ¢)} ipq phigh
and
2 2 2 2
U202,2 = - )'*’(u +¢ )J U222,2 = - )4‘(“' -@ )J w222,2 = &L(P
U 2 .2 U = u(u2-2¢?) W = - 12u@
302,2 = k(pS+2¢ ), 322,2 > T3pp,2
2, 2 2, 2
Uhoz,2 = ~WTHeT), Uypp o = -(u-beT) s Wypp 5 = b
(33)
Uppy,p = ~B(1420)ug, Upzy o = 2hug, Up11,s = 2
Usyp,p = 121420000, Uggy 5 = - 36up, Usiy,s =~
Upi1,0 = b (1428)ug, Uyzy o = 124 Upr1,3 = #

Tn order to satisfy the boundary condition of Egq.(B.T), the terms
of sin by should vanish since the terms of cos rby (r=0,2,...)

satisfy that condition identically. From this condition, the following

relation can be obtained, since z Z U = 0 and
=2,5,4 p=1,3 ‘PLs2
£ U =0: P20t P=2

2,5, A3

2
(1+v)Cy = w75 }j (Mp11%517 171101 ,1)
T Le=1,2
- o EL }: (M1 g1 0 Vg1 Y pr ,2)

- gu?¢? > z N (3L4)
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From the conditions of Egs.(30) and (34), the following equation

can be obtained by eliminating Cl :

aw = - glu,p) - wek(n,p) (35)
where

z (P, .X -Q,, Y )
1,2 211 £11,1 £11 le,l

g(u;q’) = Y 5 —(P
E:E,Z),ll- =1,3

zplxﬂpl,e‘qulepl,e)

(36)
¢ T 20,
o) = £=2,3,4
9) = 5 T (P, .X -Q, .Y )
2,34 p=1,3 £plTEpl,2 “gplTipl,2
Then, C1 is given by
2
t 3
(1+v)cl = 3 (Vs + Tw")
n
where
V = I+ Jg
T = £(Jk-M)
\
e = ) Mp% 1,101 1,0
4=1,2 (38)
I(n,e) = Z Z M 1% ep1,0 "V gp1 Y1 2
£=2,3,h p=1,3
2 -1
M(p,p) = ¢ zJ 2N

£=2,3,k
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The integral constant Ca can be determined so that the constant terms

in y(qC=O) will be zero at x = 0 .

In order to satisfy the boundary condition of Eq.(B.S),
C. = 0 (r 2 4,6,...) (40)

and the terms of cos 2by (r,qc=2) should be zero, since the terms of

sin by satisfy this condition identically. From this condition, C

2
can be determined as follows without including @, & and 7y , which are
not included in szg,g s ngg,g and sz2,2 :
2(1+)C, = -w“— y (ﬁq)M N, )X

2 2 2 2 T 22 224y £p2 £p2’ " fp2,2
1 I =0 (Pu+L5¢")

* E(Uzp2,2+wzp2,2)} (k1)

Consequently, all the arbitrary coefficients in the expression for
w and all the integration constants in the expression of the stress
function are determined as functions of w, n, 1 and ¢ . Thus, the

damped diamond-shaped deflection pattern w is finally given by

¥ -v(g-B-)+%(e—Bx- %e_gﬁx) [(e+fw2)+(g+hw2)cos 2ax +2w sin ax sin by]

(42)
in which e=-% , f=¢-hn5 , h=tk

£, 5 are given by Eq.(25) and k and g are given by Eq.(32). Because
e, f, g and h are all functions of u and ¢ only, it is convenient
to use this new nondimensional expression for w to obtain the energy
expression. With the use of this expression for w , VuF/E of Eq.(19)

is expressed by the sum of the terms of w as follows:
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The bending strain energy W.! = WE/(W‘tSLE/R) is:

2
= [E DD WD) (56)
A/ L
r & (R s >
® - 12(1-v° )(p< ® ©
@ = ____1_2__[% ef(p2+1%8 (lluu+8<ph+2hu2(p2+22u2+8(p2+ll)
12(1-v")g (57)
+ (en+rgh(® - B+ 2gh©]
L@ = m< L 25"y fh(@)+h ©>
r @ _ L l2u6+72u!+<p2+57u2<pu+l2g6
(12+P) (117 +96%) (4P k)
L
ooty 3l +7uu<p2+ll+u2¢*+8<p6+2uu+10u2<p2+8¢u+u2+llcp2) (58)
4 (1P ) (b +967) (u° )
© = ¢ x sulint) , 2autnaldeg’
o= L (1602490°) 2
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The potential energy of the axial stress Wé = Wp/(WtSLE/R) is:

' R\® Rt /oR) -3/2 N
Mp= o ® (g_t> ﬁiﬁ) 1 @nE® + @) (59)
2 3
® - £{@¢ - O + D)
2 2 2
® -3 {u (ulm2+112¢ L 2@ere @an+ @ (eh+fg)} ? (60)
¢ L 48 (h"r9")
© = %{@ f2+@h2+®fh}
J
® - 3¢A(MM+8u2¢2+2¢h) )
(12 +7) (2496 (i)
@ - 176uu+115u2¢2+18¢u > (61)
24 (1607 +9¢°)
@ = ¢/12

The unit end shortening of an axially compressed shell (€ ) is the
ratio of the total shortening in the axial direction to the length of the

cylinder; it can be defined as
L
1 ou
@) B 2

- k4o -



Through the use of Egs.(1), (42) and (43), € can be given by

(e R) - (23) Rt 11‘5/2 ® +w2®+u@ (63)

2 2

It can be seen from this equation that 1%55 enters into the relation

between o and € ; this is different from the case of overall undamped
buckling.

(1) First the case of dead-weight loading will be considered. The total

potential energy W can be expressed in the nondimensional form as

2
W= (W4 Wt wp)/(n‘tSLE/R) = - (%S) + IRJ—E L (6L)

where

,
Wt'=n_5/2i®- = n+n2®} )

® @+w2®+wh@+w6@ $
-®r LD+ ' ©
® O+ "D+ v @ )

(65)

In order to determine the postbuckling characteristics of the axially
compressed shell, it is necessary to determine the deflection parameters
w, ¢, w and 7 from the condition that the total potential energy (w')

of the system has a stationary value with respect to any small variation
of the parameters.

W' 1is a simple function of w and 7 , and so the following two

equations can be easily obtained from the conditions of (QW'/dw) = O and

(3W'/dn) = 0 , respectively.
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1]
(@]

O -([EhO*® (66)

]
(@]

s@-3(Fh @ +n*® (67)

where

\

© +2w2@©~+5mu@®
® + 2020 ) (68)
C)~+2w2QD

©
@
®

However, since u and ¢ appear in the expression for W' 1in a rather
complicated manner, it is too difficult to get analytical expressions

for OW'/Ou = O and OW'/d¢ = O . These conditions can be expressed as

2o - (@) @t} | -o ©)
%, rn's/g{@) - (%) 1@+ ®} =0 (70)

As a principle of solution, the four deflection parameters can be
determined from the above four nonlinear algebraic equations (66), (67),
(69) and (70), under a constant value of ¢ and then a relation between
(UR/Et) and w can be obtained. This relation can be replaced by the
load-deflection curve, (UR/Et) versus € , by use of the relation of

Eq. (63).

As stated above, W' 1is a very complicated function of u and
¢ and so, for the numerical process, it 1is more expedient to fix u
and ¢ (under a specified value of w ) and then to solve for (oR/Et)
along with the remaining deflection parameters, than it is to fix (UR/Et)
and to solve for all the deflection parameters. That is to say, the

following numerical successive approxlimation procedure will be used:
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First, a set of values of p and ¢ and a value of w 1is assumed.
Then, ( R/Et) and 7 can be determined from Egs. (66) and (67) as
follows:

2 . - O/® (71)

3
i

SR 5® +1- ©® N, ®+ @/ n,
( ) = ST]O@ = @ (72)

where

®=00-300 , ©®=s500-3Q0 (73)

Through use of these values of (oR/Et)O and Mg 2 Wt' can be
calculated for given values of w , W and ¢ . This procedure is
repeated for several assumed values of w and several sets of p and
@ . The particular set of pu , ¢ and w(n) which minimizes the value
of W't for a fixed value of (oR/Et) is the one which we are looking
for. Through changing the specified values of (cR/Et) , the relation-
ship between (oR/Et) and (eR/t) can be obtained and plotted as a

curve.

In this case, the length L of the cylinder has no effect on the
deflected pattern and the postbuckling stress, but it has an effect on
the load-shortening curve through Eq.(63) with a parameter of (J/Rt/L) .

(2) The case of the rigid-testing-machine loading will now be considered.

In this case, the sum of W, and W that is, the elastic strain

1 2’
energy should have a stationary value for a constant value of € . Thus,
SWP = 0 , since no axial displacements are permitted. (Wl+ W2) can be
expressed in terms of € rather than ¢ with the aid of Eq.(63) as

follows:

w'o= (W1+W2)/(1ﬁ:3LE/R) = (e B)2+ /%w" (1)
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where
wlo= n'S/E ®-(€ %)n@+n2®+%ﬁn-lm@2

In order to determine the postbuckling characteristics of the axially
compressed shell in a rigid testing machine, the deflection parameters
L, ¢, w and n should be determined by the same process as described
in (1), with the exception that (eR/t) should be maintained constant
instead of (oR/Et) . Since W" is a simple function of w and 7 ,
the following two equations can be easily obtained from the condition of

(QW"/Qw) = 0 and (dW"/An) = O , respectively.
2 Rt 1 _-1/2
n@()n®@+/:n @D - o (15)
1 Q—S(e—)n@+5® 2 n'l/2® =0 (76)

The value of n_ can be given by eliminating (eR/t) from both Egs.(75)
and (76):

"oe -®/® (71a)

This is the same as Eq.(71); and (eR/t) is obtained from Eq.(75) as

@
n, ® +
( %)O —©— [ 72 Q (77)
Next, (cR/Et)O is given by
n ®+@
(UR) © o (728)
) T @ 72



which is also the same as Eq.(72).

This means that both the case of dead-weight loading and the case
of rigid-testing-machine loading lead to the same relationship between

load and shortening under a specified value of (4/Rt/L) .

However, as stated before, the unit shortening e R/t depends on
the value of N/ﬁE/L , and so the buckling stresses depend on (,/ﬁE/L)
under specified values of shortening. On the other hand, it has been
pointed out in the many experimental reports, for example, those mentioned
in reference [12] , that the buckling stresses for the case of rigid-
testing-machine loading depend not only on the values of R/t , but also

on those of L/t . This fact is verified by the above analytical results.
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9. NUMERICAL RESULTS

As was shown in the preceding chapter, the two cases of dead-weight
loading and rigid-testing-machine loading give the same relationship
between load and shortening. Accordingly, the equilibrium curves will
now be obtained for the latter case of loading in a rigid testing machine.
Most experiments have, of course, been performed in approximately-rigid
testing machines, because a dead-weight loading condition would inevita-
bly give large postbuckling deflections, which would result in plastic

deformations and make it impossible to check the buckling mechanism.

First, as an example, the variation of the calculated values of

(OR/Et)O s (eR/t)o and n_ against w is shown in Figs-4(a), 4(b)
and 4(c), respectively, for the case of u = 1.05 . These curves were
obtained from Egs.(71), (62) and (72), respectively, by satisfying the
minimum condition with respect to 7 and w only. In the numerical
calculation Poisson's ratio was set equal to 0.3 and the curvature ratio

ﬁE/L was set equal to 0.015 in the calculation of ¢R/t (for this
example). The effect of the curvature ratio Rt/L will be discussed
later. Both of (UR/Et)O and (eR/t)o have minimal values with respect
t0 w , which means that minimal values of these parameters exist in the
postbuckling equilibrium states. Next, the variation of Wg against
(ER/t)o as a parameter of ¢ 1is shown in Figs.5(a) and S(b) for the
same W = 1.05 . Fig.5(b) is an enlargement of Fig.5(a) in the region
of small values of (eR/t)o . The values of w on each curve are varying
as shown in the parentheses on the curve of ¢ = 0.25, for example. Each
curve forms a cusp and it seems that the lower curve corresponds to stable
equilibrium states, while the upper curve corresponds to unstable equilib-

rium states.

For the case of rigid-testing-machine loading, which is now con-
sidered, a value of (eR/t) should be specified. The variation of Wg
with respect to ¢ can be plotted as shown in Fig.6 for the specified
value of €R/t equal to 0.48, as an example. The values of Wg have
some minimal values with respect to ¢ for a specified u . This means

that the damped deflection pattern exhibiting a local buckling pattern
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will be more reasonable than an overall sinusoidal pattern in the axial

direction.

By repeating such a process for the other values of u , a group of
such curves can be obtained as seen in Fig.6. It is interesting to note
that some curves for specified values of up have more than one minimum
point. Consequently, if the minimal values ( Wg,m.) of these curves are
plotted against u , a few kinds of curves of W;,m are obtained as seen
in Fig.7. These local minima wg,m,m_ shown by (I) and (II) in Fig.T
are the equilibrium points which satisfy the minimal conditions with
respect to all the parameters ¢ , @ , 0 and w under a specified

value of €R/t . The fact that there are several local minima means that

there are several possible equilibrium states under a specified shortening.

The values of W;,m,m on the local minima of (I) and (II) are
plotted in Fig.8. It seems that there are some other local minima in
addition to (I) and (II); however, because of the viewpoint that the
equilibrium state having the lowest value of wg,m,m will be the most
stable equilibrium state after buckling, only the lowest point was plotted
in Fig.8. Other local minima having a higher level of energy were thus
neglected. The lowest minimal point gives a point, under a specified

value of (eR/t) , on the load-shortening curve of Fig.9.

By specifying other values of (eR/t) , the lowest minima yield the
postbuckling equilibrium curve in question shown in Fig.9. The values
of 0 My o Ny and W, corresponding to these equilibrium states
are plotted in Figs.10, 11, 12 and 13, respectively.

As ¢ becomes smaller along curve (IT), the analysis loses its
accuracy because e-zBL (e_£¢bL) was set equal to zero on the assumption
that the length of cylinder L or the damping ccefficient ¢ 1s not too

small. Accordingly, the equilibrium curve in the region of larger (eR/t)

has been omitted here.

In the case of dead-weight lcading, the same process can be used
with the exception that W; and ER/t should be replaced by W% and
(oR/Et) , respectively.
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The variation of the deflection parameters g and h in the four
parameters which are functions of u and ¢ only in Eq.(42), is shown
in Figs.1l4 and 15, respectively. As far as the other parameters of e
and f are concerned, e is so small that it may be neglected, and f

has a nearly constant value of about 1.52.
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10. DISCUSSION

The numerical results obtained by the analysis will now be discussed

as follows:

(1) The minimal value of the axial stress in the possible equilibrium
states after buckling was found to be about 0.329. This value is higher
5

than those obtained by Kempner” and Almroth6 for the case of overall
buckling. It is believed that this result arises from the insufficient
freedom of the assumed buckled pattern and from the incomplete satisfac-
tion of the continuity conditions along the center lines., Taking into
account more terms in the expression for the buckled pattern is expected
to make it possible to satisfy more continuity-conditions, even though
it will make the analysis much more complicated. In the case of larger
values of ¢ , the violation of the continuity condition of the shearing
stress, that is, of condition (B.8), seems to become rather serious.
Accordingly, a refinement of the analysis is currently sought, by taking

into account one more term with an arbitrary coefficient, so that this

condition can be satisfied.

(2) The total strain energy has a minimum with respect to the damping
coefficient ¢ . The large values of ¢ give imaginary values of 7
which means that such cases cannot be realized. This suggests that the
local buckling pattern is a favorable mode of deformation which is likely
to arise in practice. This conclusion, which is confirmed by many experi-
mental observations, represents the essential contribution of the present

paper.

(3) The ratio of the circumferential and axial wave lengths p that

gives the minimal values of wg was found to be confined to a region

close to 1.0, as seen in Fig.1ll. The larger values of u away from 1.0

give higher values of the strain energy, which means that only the nearly
square diamond patterns can be realized, as is usually observed in experiments.

p

In contrast, the values of pu obtained by Kempner” vary within the wide
range of 0.1 to 0.25 in the unstable region, and 0.25 to 1.2 in the stable

region in the case of rigid-testing-machine loading; and the value of u
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corresponding to the minimal stress of 0.182 was found to be 0.362, even
though the minimal value of the stress is closer to the experimental

values.

(4) The effect of the length of the cylinder on the buckling stress has
been fully analyzed before, even though it has been recognized in exper-

imental work. This effect will be partly explained as follows.

The curvature parameter Af§E/L is one of the parameters in the
expression for eR/t of Eq.(63). Thus the load versus shortening curve
depends on the value of Af§E/L ,and some typical curves are shown in
Fig.1l6 with three /Jﬁg/L values. The curves shift to the right as
Aﬁ%E/L increases, that is, as L becomes smaller. The smallest value
of (eR/t), (eR/t)min , serves as a lower bound for the occurrence of
buckling in the case of rigid-testing-machine loading. The values of
the stress ( R/Et)min corresponding to this minimal value of the
shortening (eR/t)min can be used as an estimate of the buckling stresses,
even though it 1s necessary to jump over the rather high energy barrier
with the aid of some external energy. The buckling stresses defined above
are plotted in Fig.l7 from which it can be seen that they become higher
as the length of the cylinder decreases. The effect of the length of the
cylinder is believed to be mainly due to the restriction along the bound-
aries, and it seems important to take into account the boundary conditions
in the analysis of a shorter cylinder. However, the experimental evidence
that the experimental buckling stress becomes higher for shorter cylinders,
can be partly verified from such considerations of the effect of the

curvature parameter ,JRt/L .

(5) The buckled pattern obtained after satisfying the continuity con-

ditions is rewritten as:

= - v(%%)HF%(2e-6X-e_EBX){%(e+fw2)+~%(g+hm2)cos 2ax+ w sin ax sin by

ctl=

2)

while the buckled pattern used by Kem.pner5 can be expressed as follows:
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W oR 1 1 2\ 2 X .
T = - v(Et)4—ﬁ {(8 +B )w - Aw cos 2ax+ w sin ax sin by - Bw cos Eb%} (78)

by transferring the origin of coordinate to the middle point of a ridge
as shown in Fig.2. The value of B was found to be very small, which
will justify the neglect of the cos 2by term in this analysis. The
first term in the bracket in which e 1s nearly zero and f 1is an
aprroximately constant value around 0.152, corresponds to the first term
of l/8u>2 . The difference between the two patterns exists in the second
term; that is to say, that in Eq.(42) is expressed in a parabolic form

with respect to w , while that in Eq.(78) is expressed in a linear form.

The wave patterns along y = xy/xe are shown in Fig.18 for the
three equilibrium points C) C} C} referred to in Fig.9 as examples. The
valueg of the deflection parameters for these points are listed in

Table 1.

TABLE I
@ @ ®
R
(e E) 0.377 0. kb 0.60
W 0.88 0.923 1.029
@ 0.38 0.355 0.087
© 1.40 1.745 1.65
1 0.65 0.515 0.508
e 0.0017 0.0011 0
f 0.1501 0.1509 0.1528
g -0.250 -0.235 -0.137
h -0.265 -0.235 -0.288
oR
(EE) 0.355 0.3818 0.347
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The buckled patterns of (1) and (@) exhibit almost the two-tier
type of buckle, but the damping in (:) is so small that this curve
exhibits a nearly sinusoidal overall buckling pattern. However, it is
expected that the damped pattern will be realized also in the range of

larger shortening as will be explained below.

(6) Two stable equilibrium states were found to exist under a specified
value of axial shortening. It will be reasonable to believe that the
equilibrium state having the lowest value of the total strain energy 1is
the most likely one after buckling. 1In this sense, the equilibrium
curves marked (I) and (II) will be the most feasible stable states and
the value of the (eR/t) around 0.L46 is the separating point of the

two kinds of equilibrium states, of which (1) represents the highly
damped pattern, while (II) represents the slowly damped pattern. It is
unimportant that the two curves (I) and (II) are not connected continuously.
.The cylinder will not necessarily take the equilibrium position with the
lowest level of energy in the postbuckling region, but the buckling will
take place at a constant value of 17 , that 1is, with an integral number
of circumferential waves. With increasing end shortening, the specimen
will jump into a new and similar buckled pattern reducing the number of
buckles by one, as seen in the experiments of Thieleman%S, In order to
snap from a stable equilibrium position of higher energy level to another
stable equilibrium position, a finite amount of external energy must be
supplied to the system. Accordingly, it can be imagined that the stable
state (II) in the region of larger eR/t will not be easily realized

even though it has the lowest value of the energy.

The actual buckling is believed to follow the process shown in the
schematic diagram of Fig.l19 for the case of rigid-testing-machine loading.
With increasing shortening beyond (eR/t)min , the shell will buckle
easily into the region of state (I), which has a highly-damped buckling
pattern, because the energy barrier corresponding to the unstable equi-
1librium state shown by the dotted line is very small. The equilibrium
curve having a constant number of n(n) will be followed for a while as
the shell is continuously compressed. But at one point (say, for example,

point C)), the shell will snap through into another equilibrium curve @D
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having a value of n smaller by one, because the energy on 2) is
smaller than that on (1) . As the shortening increases, the damping is

expected to decrease as seen in Fig.l10,

On the other hand, in the unloading process, the final curve marked
@) in Fig.19 will be followed for a while because the energy level 1is
lower than that on the adjacent curves. The equilibrium curve belonging
to category (II) which has smaller damping will not be realized unless

the cylindrical shell is compressed considerably.

From the above considerations, it is thought that it is important
to obtain the group of equilibrium curves for constant values of n(n)
in the investigation of the postbuckling behavior of shells. Such a

treatment will be discussed in a Torthcoming paper.

(7) In this paper, the effects of initial imperfections on the buckling
stresses were not studied. Moreover, stability considerations were not
given. The criterion of stability depends on the second variation of

W" or W' for the cases of rigid-testing-machine loading or dead-
weight loading. It can be shown that the solid (lower) curve to the
right of the minimal value of eR/t has a positive value of the second
variation of strain energy indicating a stable equilibrium state, while
the dotted (upper) curve represents unstable equilibrium states. Although
the first variations are the same for the two cases o = constant and

€ = constant, such will not be the case for the second variation. Both
curves (I) and (II) are stable in the case of € = constant, but curve
(II) will be an unstable and curve (I) will be only a locally stable
state having a higher level of energy in the case of o = constant.
There is another stable state in the range of large deflections which
was not considered here, because the buckling pattern without damping
gives the lowest level of the total potential energy, and this analysis

loses its accuracy in this region
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